1. AirQualityUCI 데이터셋

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

air_df = pd.read_csv('/content/drive/MyDrive/KDT v2/머신러닝과 딥러닝/ data/AirQualityUCI.csv')
air_df

 

air_df.info()

# 결과값 => 
#  #   Column         Non-Null Count  Dtype  
# ---  ------         --------------  -----  
#  0   Date           9357 non-null   object 
#  1   Time           9357 non-null   object 
#  2   CO(GT)         9357 non-null   float64
#  3   PT08.S1(CO)    9357 non-null   float64
#  4   NMHC(GT)       9357 non-null   float64
#  5   C6H6(GT)       9357 non-null   float64
#  6   PT08.S2(NMHC)  9357 non-null   float64
#  7   NOx(GT)        9357 non-null   float64
#  8   PT08.S3(NOx)   9357 non-null   float64
#  9   NO2(GT)        9357 non-null   float64
#  10  PT08.S4(NO2)   9357 non-null   float64
#  11  PT08.S5(O3)    9357 non-null   float64
#  12  T              9357 non-null   float64
#  13  RH             9357 non-null   float64
#  14  AH             9357 non-null   float64
#  15  Unnamed: 15    0 non-null      float64
#  16  Unnamed: 16    0 non-null      float64

한/영 변환

영어 한국어
Date 측정 날짜
Time 측정 시간
CO(GT) 일산화탄소 농도 (mg/m^3)
PT08.S1(CO) 일산화탄소에 대한 센서 응답
NMHC(GT) 비메탄 탄화수소 농도 (microg/m^3)
C6H6(GT) 벤젠 농도 (microg/m^3)
PT08.S2(NMHC) 탄화수소에 대한 센서 응답
NOx(GT) 산화 질소 농도 (ppb)
PT08.S3(NOx) 산화 질소에 대한 센서 응답
NO2(GT) 이산화질소 농도 (microg/m^3)
PT08.S4(NO2) 이산화질소에 대한 센서 응답
PT08.S5(O3) 오존에 대한 센서 응답
T 온도 (°C)
RH 상대 습도 (%)
AH 절대 습도 (g/m^3)

 

air_df.drop(['Unnamed: 15', 'Unnamed: 16'], axis=1, inplace=True)

 

# 모든 데이터에 na가 포함되어 있다면 제거
air_df.isna().mean()

# 결과값 => 
# Date             0.012037
# Time             0.012037
# CO(GT)           0.012037
# PT08.S1(CO)      0.012037
# NMHC(GT)         0.012037
# C6H6(GT)         0.012037
# PT08.S2(NMHC)    0.012037
# NOx(GT)          0.012037
# PT08.S3(NOx)     0.012037
# NO2(GT)          0.012037
# PT08.S4(NO2)     0.012037
# PT08.S5(O3)      0.012037
# T                0.012037
# RH               0.012037
# AH               0.012037

air_df.dropna(inplace=True)

 

# Date 컬럼의 데이터를 datetime 형식으로 변환
# 날짜-월-년도 형식으로 유지
# date 열을 datetime으로 변환
air_df['Date'] = pd.to_datetime(air_df.Date, format='%d-%m-%Y')
air_df.head()

 

# Month 파생변수만들기
# date 컬럼에서 월을 추출
air_df['Month'] = air_df['Date'].dt.month
air_df.head()

 

# hour 파생변수 만들기
# time에서 시간만 추출
air_df['Hour'] = air_df['Time'].str.split(':').str[0].fillna(0).astype(int)
air_df.head()

 

# Date, Time 컬럼을 제거
air_df.drop(['Date', 'Time'], axis=1, inplace=True)

 

# hearmap을 통해 상관관계를 확인
plt.figure(figsize=(12, 12))
sns.heatmap(air_df.corr(), cmap='coolwarm', vmax=1, vmin=-1, annot=True)
plt.show()

 

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

ss = StandardScaler()
X = air_df.drop('RH', axis=1)
y = air_df['RH']

Xss = ss.fit_transform(X)

# train: 80%, val : 20% 데이터를 분할

X_train, X_test, y_train, y_test = train_test_split(Xss, y, test_size=0.2, random_state=2023)

X_train.shape, y_train.shape
# 결과값 => ((7485, 14), (7485,))

X_test.shape, y_test.shape
# 결과값 => ((1872, 14), (1872,))

 

2. 모델별 성능 확인을 위한 함수 

my_predictions = {}
colors = ['r', 'c', 'm', 'y', 'k', 'khaki', 'teal', 'orchid', 'sandybrown',
          'greenyellow', 'dodgerblue', 'deepskyblue', 'rosybrown', 'firebrick',
          'deeppink', 'crimson', 'salmon', 'darkred', 'olivedrab', 'olive',
          'forestgreen', 'royalblue', 'indigo', 'navy', 'mediumpurple', 'chocolate',
          'gold', 'darkorange', 'seagreen', 'turquoise', 'steelblue', 'slategray',
          'peru', 'midnightblue', 'slateblue', 'dimgray', 'cadetblue', 'tomato']
def plot_predictions(name_, pred, actual):
  df = pd.DataFrame({'prediction': pred, 'actual': y_test})
  df = df.sort_values(by='actual').reset_index(drop=True)
  plt.figure(figsize=(12, 9))
  plt.scatter(df.index, df['prediction'], marker='x', color='r')
  plt.scatter(df.index, df['actual'], alpha=0.7, marker='o', color='black')
  plt.title(name_, fontsize=15)
  plt.legend(['prediction', 'actual'], fontsize=12)
  plt.show()
def mse_eval(name_, pred, actual):
  global my_predictions
  global colors
  plot_predictions(name_, pred, actual)
  mse = mean_squared_error(pred, actual)
  my_predictions[name_] = mse
  y_value = sorted(my_predictions.items(), key=lambda x: x[1], reverse=True)
  df = pd.DataFrame(y_value, columns=['model', 'mse'])
  print(df)
  min_ = df['mse'].min() - 10
  max_ = df['mse'].max() + 10
  length = len(df)
  plt.figure(figsize=(10, length))
  ax = plt.subplot()
  ax.set_yticks(np.arange(len(df)))
  ax.set_yticklabels(df['model'], fontsize=15)
  bars = ax.barh(np.arange(len(df)), df['mse'])
  for i, v in enumerate(df['mse']):
    idx = np.random.choice(len(colors))
    bars[i].set_color(colors[idx])
    ax.text(v + 2, i, str(round(v, 3)), color='k', fontsize=15, fontweight='bold')
  plt.title('MSE Error', fontsize=18)
  plt.xlim(min_, max_)
  plt.show()

 

3. Linear Regression

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
pred1 = model.predict(X_test)
rs1 = np.sqrt(mean_squared_error(y_test, pred1))
mse_eval('LinearRegression', pred1, y_test)

 

4. Decision Tree Regression

from sklearn.tree import DecisionTreeRegressor
model2 = DecisionTreeRegressor()
model2.fit(X_train, y_train)
pred2 = model2.predict(X_test)
rs2 = np.sqrt(mean_squared_error(y_test, pred2))
mse_eval('DecisionTreeRegressor', pred2, y_test)

 

 

5. Random Forest Regression

from sklearn.ensemble import RandomForestRegressor
model3 = RandomForestRegressor()
model3.fit(X_train, y_train)
pred3 = model3.predict(X_test)
rs3 = np.sqrt(mean_squared_error(y_test, pred3))
mse_eval('RandomForestRegressor', pred3, y_test)

 

6. Support Vector Machine

from sklearn.svm import SVR
model4 = SVR()
model4.fit(X_train, y_train)
pred4 = model4.predict(X_test)
rs4 = np.sqrt(mean_squared_error(y_test, pred4))
mse_eval('Support Vector Machine', pred4, y_test)

 

7. lightGBM

from lightgbm import LGBMRegressor
model5 = LGBMRegressor(random_state=2023)
model5.fit(X_train, y_train)
pred5 = model5.predict(X_test)
rs5 = np.sqrt(mean_squared_error(y_test, pred5))
mse_eval('lightGBM', pred5, y_test)

 

dict = {
    'LinearRegression': rs1,
    'DecisionTreeRegressor': rs2,
    'RandomForestRegressor': rs3,
    'Support Vector Machine': rs4,
    'lightGBM': rs5
}

res = [key for key in dict if all(dict[temp] >= dict[key] for temp in dict)]
# print(res)
min = {k: dict[k] for k in dict.keys() & set(res)}
print(min)

# 결과값 => {'RandomForestRegressor': 0.5998295644683213}

 

좀더 간편한 방법

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2023)
models = {
    "Linear Regression": LinearRegression(),
    "Decision Tree": DecisionTreeRegressor(),
    "Random Forest": RandomForestRegressor(),
    "Gradient Boosting": GradientBoostingRegressor()
}
# Train and evaluate the models
results = {}
for name, model in models.items():
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)
    mse = mean_squared_error(y_test, predictions)
    results[name] = mse
results